第99回応化セミナ -

層状Li-Ni系複合酸化物の 電子構造とメタンの選択酸化機能

愛媛大学大学院理工学研究科 無機·物性物理化学分野 宮崎隆文

本セミナーの内容

- 1. 層状Li-Ni系複合酸化物
- 2. 紫外光電子分光による電子状態分析
- 3. メタンの化学的な有効利用法
- 4. 電子構造制御による反応選択制御

層状Li-Ni系複合酸化物の電子状態と選択酸化機能

(Key words)

- 層状Li-Ni系複合酸化物
 Li, Ni, Oを構成元素として含み、層状構造を有している: (例)LiNiO₂、LiNi₂Co₁、O₂、など
- 紫外光電子分光
 電気伝導性や反応性に関わる価電子帯(フェルミ準位近傍)
 の占有されたエネルギ 準位や最表面の電子状態

メタン(CH₄) 天然ガスの主成分(約90%)、有機物の中で高い安定性

不定比 ベガード ^{単位格子の:}	化合物 則 ^{大きさは組成と共に} なめらかに変化する。	43.803 37.690 43.718 37.605	63.702
基本構造(対 ・Li _v Ni _{2-v} C	^{技術性)は変化しない。}	43.592 37.521	63.406
• x=0.1 • x=0.2	2.0861 2.0803	43.508 37.395	63.111
• x=0.3 • x=0.4 • x=0.5	2.0765 2.0708 2.0670	43.381 (200) 37.184 (111)	62.991 ⁽²²⁰⁾

LiNiO₂

層状アルカリ金属複合酸化物 基本的な構造はNaCIやNiOと類似して いるが、O層を挟んでLi層とNi層が積層 配列構造をとる。 その構造的な特徴は、層間のLiは容易 に出し入れ可能で二次電池の電極材料

o Ni

• Li 0 0

1

EXAFS(拡張X線吸収微細構造) (Extended X-ray Absorption Fine Structure)

x in $Li_x Ni_{2x}O_2$

メタンと金属酸化物との反応

Li-Ni系複合酸化物による メタンの選択的な酸化カップリング反応

メタンとエチレン

化学式:CH ₄ •	化学式:C₂H₄
有機物中で化学的な安定性が高い。・	化学的な反応
C - H結合の解離: 411kJmol ⁻¹ (平均) *	C=C結合の解
(C - C結合(C2H6)の解離:366kJmol ⁻¹)	C ₂ H ₄ +3O ₂ 20
CH ₄ +2O ₂ CO ₂ +2H ₂ O··890.4kJmol·1•	石油成分であ
天然ガスやメタンハイドレートに多く 🔸	高分子材料の
含まれる。・	工業化学的に
燃料としての利用価値あり。	日本の生産
	工業の消費量

 化学式:C₂H₄
 化学的な反応性は高い,
 C=C結合の解離;588kJmol⁻¹
 C₂H₄+30₂ 2CO₂+2H₂O··1410kJmol⁻¹
 石油成分であるナフサを熱分解する,
 高分子材料の原料となる,
 工業化学的に高い利用価値あり, 日本の生産量:757万¹₅(2004)
 工業の消費量:299万¹₅(2004)

メタンのC-H結合を順次に切断

• CH ₄	CH_3	+	Н	••••• 435kJmol ⁻¹
∙ CH ₃	CH_2	+	Н	•••••• 450kJmol ⁻¹
• CH ₂	СН	÷	Н	•••••• 427kJmol ⁻¹
• CH	С	+	Н	•••••• 339kJmol ⁻¹
• CH ₄	С	÷	4H	·····1651kJmol ⁻¹
メタンから水 約 4.7 eV	素を引き払 ' に相当す	↓ てる結 [・]	めには 合エネ	、 ルギ - を切断する必要がある。

		1) < > >.		
Comp.	CO2 / µ molmin''	С₂Н₆ / µ molmin**	С₂Н₄ / µ molmin ⁻¹	$\frac{C_2H_4}{C_2H_4+C_2H}$
NiO	277.0	< 0.1	< 0.1	
Li _{0.3} Ni _{1.7} O ₂	19.8	7.9	7.1	0.47
Li _{0.5} Ni _{1.5} O ₂	12.6	4.5	6.5	0.59
Li _{0.7} Ni _{1.3} O ₂	< 0.1	1.3	4.1	0.76
Li _{0.8} Ni _{1.2} O ₂	< 0.1	13.0	20.5	0.61
LiNiO ₂	< 0.1	12.6	32.9	0.72

UPS measurement system (IMS)

Results and discussion I

Structural analysis of LiNi_{1-v}M_vO₂ by XRD

Results and discussion IV UPS of LINIO₂ and LINI_{0.9}M_{0.1}O₂ (M=Mn, Ti) $tilde{M}_{0,0}$ t

Results and discussion V The C₂-selectivity and O2p band intensity

The C-band of LiNi₀ $_{0}$ Mn₀ $_{1}$ O₂ occupied about 75% for area intensitiof total O2p orbit, and it was less or equivalent to 79% in case c LiNiO₂. The C-band of LiNi₀ $_{0}$ Ti₀ $_{1}$ O₂ meanwhile increased to 87%.

The C2-selectivity for the OCM reaction was

 $LINI_{0.9}Mn_{0.1}O_2(61\%) < LINIO_2(63\%) < LINI_{0.9}TI_{0.1}O_2(70\%)$

It was possible to conclude a direct relation in electronic state the metal oxide surface and the selective oxidation.

総括と展望

- ・紫外光電子分光法を使って、価電子帯領域の電子構 造と酸化反応との関連を調べ、電子構造と反応選択 性の相関が示唆された。
- その結果、価電子帯の電子構造制御することによる 反応制御技術へ結び付く可能性が示した。
- 選択的にメタン(C₁)をエチレン(C₂)(またはエタン)に転換することは可能であるが、(実用化という観点から) C₁ C₂への転換効率の低さが問題点である。
- 現在は、高分散化と高密度化された、
 "層状Li-Ni系複合酸化物の薄膜化"
 の改良を検討している。